Hydraulic pump and motor animations

hydraulic pumps and motors animations and advice

Modules  Course  Video  Experiment

Section Menus

Other Websites

  1. Engineering Adventures
  2. Educational Science for Kids
  3. FREE Website Builder
  4. Ballroom Dancing lessons and game
  5. eMarketing tools
  6. Self Build CDs

What hydraulic pumps and motors are used for

hydraulic pumps

Hydraulic pumps provide a flow of fluid into a system. Typical applications include:

Gerotor: lubrication and boost pump or light duty motors. Typically low-pressure automotive systems.

Geroler: light to medium duty drive motors. Typically lightweight mobile applications

Roller vane: low to medium performance but not used outside automotive applications.

External gear: Robust, lower cost pumps and some motors. Widely used in low to medium duty mobile systems or lower cost industrial power units.

Internal gear: Medium cost systems where robust, low noise is required. Typically industrial power unit pumps but not motors.

Vane: Industrial, medium cost power units. Where low noise is required but also relatively low pressures and duty are required. Vane motors are available but not commonly used.

Axial piston: Medium to high pressure, heavy duty pumps tend to use swashplate designs and drive motors tend to use bend axis designs. Typically excavator lifting or drive systems plus continuous duty industrial power units.

Radial piston: Very high-pressure industrial pump and heavy-duty wheel drive motors. Typically industrial presses, test rigs etc. and large mobile equipment wheel drives.

How hydraulic pumps and motors work

All pumps work by transferring rotary power into an area of changing volume. As the volume increases, atmospheric pressure acting on top of the fluid in the reservoir pushes the fluid into the new space. The pump should not suck the fluid as this is likely to result in damaging cavitation or aeration. Once the full volume has been reached then timing grooves or ports of the pump, open to allow an area of decreasing volume to push the fluid out into the hydraulic system. The system will create the pressure from the load, not the pump supply.

Different types of hydraulic pump and motors

gerotor pump small Gerotor pumps and motors come with a range of impeller designs e.g. two or multi-lobe versions, depending on application requirements.

Another variation on the gerotor design is the higher performance geroler design of pump and motor. gerotor pump small

external gear pump small External gear pumps come with fixed or floating bearing designs. Several different types of low noise versions are also available. External gear motors are available but not as widely used as gear pumps. Fixed displacement only.

internal gear pump small Internal gear pumps and motors are available from a number of manufacturers with different design details and numbers of teeth. Fixed displacement only and a more limited size range than external gear pumps.

vane pump small Vane pumps come in twin chamber, fixed displacement only, or single chamber, fixed or variable displacement. Design quality can vary, along with the pressure rating, duty, and noise. Roller vane pumps are version used in the automotive sector for relatively low cost, robust operation, but not particularly high performance. Vane motors are available but not widely used. roller vane pump small

piston pump small Axial piston pumps are available in fixed and variable displacement models. Both come in swashplate or bent axis designs. A wide range of design variations and build standards are available from many different manufacturers. Piston motors are also widely used in bent axis format in both fixed and variable designs.

radial pump small Radial piston pumps are available in a number of different design formats from different manufacturers and with different numbers of pistons within each design. Radial piston motors are far more common than pumps because of their wide use as wheel motors. These also have the ability to switch pistons ON or OFF to change displacements. low speed motor small

Understand hydraulic pumps displacement

Fixed or variable displacements are measured in cubic centimetres per revolution, cc/rev or cubic inches per revolution, cuin/rev. For example a 10cc/rev pump will give 10 Litres per minute (L/min) at 1000 revs/minute.

How to specify hydraulic pumps and motors

With so many different manufacturers and products, we cannot provide specific performance details or recommendations. Instead, we will highlight the important factors in each particular design type, but users must check the manufacturer's datasheet to compare how well different products perform.

Some of the important areas to consider with pumps and motors are:

1. Cleanliness limits e.g. the level it needs from the system to work reliably and the best it will allow the system to run at, considering the duty at which it will work. Users should also consider what the consequences will be if the pump was to fail e.g. what would be the nature of the debris released during a typical failure. Does filtration need to be improved?

2. What is the minimum suction head requirement? Can pump suction conditions be improved, particularly when starting from cold? Will units operate at altitude which could increase potential issues.

3. What is the predicted life of the pump under the expected duty cycle? Remember that rated life predictions are based on normal operating conditions, which will not be the same for all installations. Have peak pressure or continuous pressure ratings been used?

4. Consider what effect the system dynamics will have on pump life e.g. a high frequency of pressure changes or very steep pressure rise rates.

5. Does the drive system apply acceptable side loading to the pump drive shaft?

6. Is the pump, its seals and operating fluid appropriate for the working temperature range.

7. Is planned maintenance appropriate e.g. is the fluid health checked or could it be damaged by aging or local operating conditions, therefore, reducing the life of the pump? Can the temperature of the case leakage line be monitored as a way of predicting pump damage?

8. Could volumetric efficiency drop at particular working speeds, temperatures, or pressures? Is there enough installed power to operate under the worst conditions or are certain environmental operating limits required.

9. Could overall efficiency drop at particular speeds or pressures?

10. Does the pump require a separate case leakage line? And if so what is the maximum pressure permitted. It's always recommended to have a motor case leakage line even it the pump version doesn't. Motor return lines are likely to exceed shaft seal limits and therefore without a drain line, high case pressures will cause seal failures or reduced life.

11. Will pump generated noise be an issue? Are quieter pump options available or can the noise propagation throughout the system be contained instead?

12. Has the installation been considered? Are lifting points or special tools required.